

High Frequency Current Probe HCPX8000 Series

HCPX8030 30A/DC 50 MHz HCPX8030C 30A/DC 70 MHz HCPX8030D 30A/DC 100 MHz HCPX8030H 30A/DC 120 MHz HCPX8050 50A/DC 50 MHz HCPX8070 70A/DC 30 MHz

HCPX8150 150A/DC~12 MHz
HCPX8150A 150A/DC~22 MHz
HCPX8300 300A/DC~ 6 MHz
HCPX8300A 300A/DC~ 8 MHz
HCPX8500 500A/DC~ 5 MHz

产品说明书

Product User Manual

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A **WARNING** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Table of Contents

Safety Notices 1

Features and Applications 2

Description of products 2

Making Measurements 3

Safe Probing 4

Accessories Description 6

Specification 7

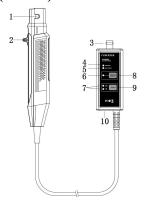
Operating method 13

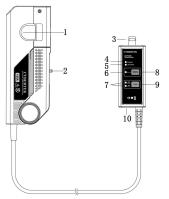
The method to deal with abnormal situation 15

Packing list 15

1. Features and Applications

The **HCPX8000** series current probes are high frequency DC/AC active current probes featuring high bandwidth and high accuracy. Operating with our OT7001 smart probe adaptor, HCPX8000 can communicate with most mainstream brand oscilloscopes on the market and set up attenuation ratio, impedance and delay time automatically. This system freed the users from the trouble of setting parameter manually with the third-party probe and achieve the same user experience as those specialized probe. If the users have no need for smart control function, they can also just power this probe with regular adaptor during measurement.


Applications


- ♦ Switching and linear power design
- ♦ LED lighting design
- ♦ New energy resources
- ❖ Frequency conversion household appliances
- ♦ Experiment of electronic engineering
- Semiconductor devices design
- ♦ Inverters / transformer design
- ♦ Electronic ballast design
- → Industrial control / consumer electronic design
- ♦ Engine driven design
- ♦ Power electronic and electrical drive experiment
- ♦ Electric vehicle transportation design

2. Description of products

HCPX8030(C/D/H) / HCPX8050 / HCPX8070 HC

HCPX8150(A) / HCPX8300(A) / HCPX8500

1) Sensor Head

The core component to measure conductor current. The component contains a precise semi-conductor that could be damaged by drastic change of environmental temperature, external pressure and shock. Please be careful during measurement.

2) Opening lever

The operating lever used to open the sensor head. Pull the lever to open the sensor jaw, put in the cable under test, and push the lever to lock the sensor head to measure the current.

3) BNC Output Connector

The standard BNC port that can be connected to oscilloscope of any brand by a standard BNC Coaxial Cable (CK-310).

4) Overload Indicator LED

If / when the current under measured exceeds the limit current, the red LED will light up and the buzzer will sound an alarm.

5) Jaw on indicator

When the light is on, it means that the push rod is in the unlock state. Make sure that the jaw is in the lock state during the measurement.

6) Degaussing and Zero Setting Indicator

After pressing the degaussing zero button, the indicator light will be green, and after degaussing, the indicator light will be off. If degaussing setting succeeds, the buzzer will make two short beeps. If degaussing setting failed, the buzzer will make an extension beep of about one second.

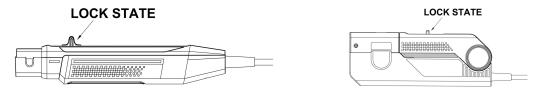
7) Range LED Indicator

The green LED indicates the selected range.

8) Degauss auto zero button

Frequent usage of the device will generate residual magnetic field. Please degauss and zero set before measurement for better measurement precision. Press the degaussing and auto zero button to trigger the process (should be around 5s).

9) Range selected button


10) Power supply socket

External power supply socket, standard with (5V/2A) adapter model CK-605A.

3. Making Measurements

Before using the probe, check that the system is safe and that the preparations described in Safe Probing.

- → Have a visual inspection of the current probe of high frequency HCPX8000 Series probes, power supply, cable, and oscilloscope.
- The output of the current probe is terminated internally. Use a high impedance input to the measuring instrument. Be sure to set the input impedance to 1 M Ω before making measurements. Set the oscilloscope's input coupling to DC. With the oscilloscope input at ground, adjust the trace to the zero position. Connect the probe's output connector to the oscilloscope's input connector.
- Connect the power supply to probe and the power indicator will light. Select suitable Range you want via the Range Key.
- ♦ Ensure that the probe sensor is NOT clamped around any conductors. Slide the probe's Opening Lever into the LOCKED position as shown in Figure. Confirm that the sensor head is properly closed.

♦ Degaussing and Zero Setting

When the key is pressed, the probe will demagnetize the core and set the output to zero voltage if it has been magnetized by switching the power on and off, or by an excessive input. Always carry out demagnetizing and Zero Setting before measurement and without current in the clamp. The demagnetizing and Zero Setting process takes about a few seconds. During demagnetizing and Zero Setting, a demagnetizing waveform is output.

If degaussing and Zero Setting succeeds, the buzzer will make two short beeps. If degaussing and Zero Setting failed, the buzzer will make a single sound, for one second.

Do not demagnetize while the conductor being measured is clamped. This could damage the components of

www.cybertek.cn

the circuit being measured. Also, check that the conductor being measured is not clamped when supplying power to the current probe for the same reason. Demagnetized waveforms are generated when switching on the supply.

♦ Measurement

- Press the opening lever to open the sensor head.
- Align the sensor so that the probe's current direction indication corresponds to the direction of current flow through the conductor to be measured. Also, align the clamp so that the conductor is in the center of the sensor aperture.
- Press the opening lever on the sensor head until the UNLOCK indication disappears. Check that the opening lever is firmly locked, and the sensor head securely closed.

4. Safe Probing

This device is designed to comply with Safety Standards and has been thoroughly tested for safety prior to shipment. However, mishandling during use could result in injury or death, as well as damage to the device. Be certain that you understand the instructions and precautions in the manual before use. We disclaim any responsibility for accidents or injuries not resulting directly from device defects.

To avoid short circuits and potentially life-threatening hazards, follow these warnings and precautions:

WARNING

- Never attach the clamp to a circuit that operates over the maximum rated voltage to earth.
- Please avoid clamping around bare conductors during measurement.
- While clamping and measuring, do not touch the clamp in front of the barrier or the conductor being measured.
- **>** Be careful to avoid damaging the insulation surface while taking measurements.
- Make sure that the waveform measuring equipment connected to this device's output terminal (BNC) is equipped with a protective earthling with double-insulation construction.
- Do not allow the device to get wet, and do not take measurements with wet hands. This may cause an electric shock
- If the waveform measuring instrument being connected to the output terminal (BNC) on this device is equipped with any other measurement terminals, take the following precautions to ensure that the other instrument does not form a bridge between the probe and any hazardous live part of a part.
 - Isolate the terminal to which the probe is connected from other terminals on the measuring instrument using basic insulation conforming to the measurement category, working voltage, and pollution degree requirements of the circuit being tested.

If basic insulation requirements cannot be met between the terminal to which this device is connected and other terminals of the measuring instrument, make sure that the voltage input to the measurement terminal does not exceed the Separated Extra-Low Voltage Earthed.

Read and observe all warnings and precautions relating to electrical safety for the measuring instrument being connected to the probe.

CAUTION

To avoid damage to the device, protect it from vibration or shock during transport and handling, and be especially careful to avoid dropping.

- Do not store or use the device where it could be exposed to direct sunlight, high temperature, humidity, or condensation. Under such conditions, the device may be damaged and insulation may deteriorate so that it no longer meets specifications.
- Before using the device the first time, verify that it operates normally to ensure that the no damage occurred during storage or shipping. If you find any damage, contact your dealer or CYBERTEK representative.
- This device is not designed to be entirely water- or dust- proof. To avoid damage, do not use it in a wet or dusty environment.
- The sensor head is a precision assembly including a molded component, a ferrite core, and a Hall Effect element. It may be damaged if subjected to sudden changes in ambient temperature, or mechanical strain or shock, and therefore great care should be exercised in handling it.
- The matching surfaces of the sensor head are precision ground, and should be treated with care. If these surfaces are scratched, performance may be impaired.
- Foreign substances such as dust on the contact surfaces of the sensor head can cause acoustic resonance and degrade measurement, so it should be cleaned by gently wiping with a soft cloth.
- To avoid damaging the sensor cable and power supply cable, do not bend or pull the cables.
- When the power is on, keep closed, except when clamping them onto the conductor to be measured. The facing surface of the core section can be scratched while it is open.
- Do not place any un-clamped conductor with an electric current of a frequency of 10 kHz or more near the sensor head. Current flowing in the conductor nearby may heat up the sensor head and cause its temperature to rise, leading to damage to the sensor. For example, when one side of a go-and-return conductor is clamped and the other side is also placed near the sensor head, even if the electric current is lower than the consecutive maximum current, electric currents in both sides will heat up the wires and raise the temperature, thereby causing damage to the sensor.
- The maximum continuous input range is based on heat that is internally generated during measurement.

 Never input current in excess of this level. Exceeding the rated level may result in damage to the probe.
- The maximum continuous input range varies according to the frequency of the current being measured.
- If excess current is input, generated heat activates a built-in safety function that blocks normal output. If this happens, remove the input immediately (remove the sensor from the conductor being measured or reduce the input current to zero). Wait until the sensor has had sufficient time to cool before resuming operation.
- Even if the input current does not exceed the rated continuous maximum, continuous input for an extended period of time may result in activation of the safety circuit to prevent damage resulting from heating of the sensor.
- At high ambient temperatures, the built-in safety circuit may activate at current input levels below the rated continuous maximum.
- Continuous input of current exceeding the rated maximum or repeated activation of the safety function may result in damage to the unit.
- The probe is rated for maximum input under two conditions in addition to the input maximums shown in the Specifications. These are (1) 30A peak for non-continuous input and (2) 50A peak for pulse widths 10 µs. (1) indicates an upper waveform response limit of 30A peak. Use the sensor at RMS current input levels that are within the rated continuous maximums. (2) Indicates the upper response limit for a single input pulse.
- When opening the sensor head of the probe, be sure to operate with the opening lever. If an upper core is forced to open when the sensor head is locked, the open close mechanism can be damaged.

NOTE

- The output of this unit is terminated internally. Use an oscilloscope with an input impedance of at least 1 MO.
- Immediately after powering on the probe, the probe may be subject to an appreciable offset drift due to the effect of self heating. To counteract this, allow the probe to warm up for about 30 minutes before carrying out measurement.
- ♦ When performing continuous measurements, it is necessary to be aware that the offset voltage drifts, depending on factors such as the ambient temperature.
- Under certain circumstances, oscillation may occur if the probe is connected to the power supply while the power supply is on. This does not indicate a malfunction. Oscillation can be stopped and operation restored to normal by opening and closing the sensor head.
- ♦ Depending on the measured current frequency, some sound maybe produced by resonance, but has no effect on measurements.
- The reading may be affected by the position within the clamp aperture of the conductor being measured. The conductor should be in the center of the clamp aperture.
- ♦ When carrying out a measurement, press the opening lever until the UNLOCK indication disappears and check that the sensor head is properly closed. If the sensor head is not properly closed, an accurate measurement is not possible.
- Accurate measurement may be impossible in locations subject to strong external magnetic fields, such as transformers and high-current conductors, or in locations subject to strong external electric fields, such as radio transmission equipment.
- ♦ At high frequencies, common mode noise may affect measurements taken on the high voltage side of circuits. If this occurs, reduce the frequency range of the waveform measuring instrument or clamp onto the low-voltage side of the circuit.

5. Accessories Description

Standard accessories description:

BNC Cable (CK-310)

Power Adapter(CK-605A)

USB cable

Optional accessories description:

The smart probe adaptor can identify the smart probe connected with automatically and set up the parameter on oscilloscope including voltage/current type, attenuation ratio and delay time etc. Please refer to the corresponding user manual for detailed instruction.

6. Specification

Electrical characteristics

Small Pliers

Model	Н	ICPX8030(C/D/H)	Н	CPX8050	Н	ICPX8070
	HCPX8030	DC-50MHz(Figure1.a)				
Bandwidth	НСРХ8030С	DC-70MHz(Figure1.b)	D	C-50MHz	D	C-30MHz
(-3dB)	HCPX8030D	DC-100MHz(Figure1.c)	(Figure4)		(Figure7)
	НСРХ8030Н	DC-120MHz(Figure1.d)				
	HCPX8030	≤7ns				
D' d'	НСРХ8030С	≤5ns		~3		/11 C
Rise time	HCPX8030D	≤3.5ns		≤7ns		≤11.6ns
	НСРХ8030Н	≤2.92ns				
G (*	HCPX8030	30Arms (Figure2.a)				
Continuous	НСРХ8030С	30Arms (Figure2.b)		50Arms		70Arms
maximum input	HCPX8030D	30Arms (Figure2.c)	(Figure5)		(Figure8)
range	НСРХ8030Н	30Arms (Figure2.d)	1			
Max peak current value		50Apk		75Apk		100Apk
Danga	5A	1X	7.5A	1X	10A	2X
Range	30A	10X	50A	10X	70A	20X
Overload	5A	≥5APk	7.5A	≥7.5APk	10A	≥10APk
Overioau	30A	≥50APk	50A	≥75APk	70A	≥100APk
Current transfer ratio	5A	1V/A	7.5A	1V/A	10A	0.5V/A
Current transfer ratio	30A	0.1V/A	50A	0.1V/A	70A	0.05V/A
measurable	5A	1mA	7.5A	1mA	10A	2mA
current	30A	10mA	50A	10mA	70A	20mA
Amplitude	5A	±1%±1mA	7.5A	±1%±1mA	10A	±1%±2mA
accuracy (DC,45-66Hz)	30A	±1%±10mA	50A	±1%±10mA	70A	±1%±20mA
	HCPX8030	Reference Figure (3.a)				
Input	НСРХ8030С	Reference Figure (3.b)	Reference (Figure6)		Reference (Figure9)	
impedance	HCPX8030D	Reference Figure (3.c)				
	НСРХ8030Н	Reference Figure (3.d)				
Maximum Amp-Second		50A • ms	75A • ms		100A • ms	
Product		SUA - IIIS	'	SA · IIIS	1	OUA • IIIS
Terminal load			≥100kΩ	!		
Power supply		DC 5V/2A	(Standar	rd Adaptor)		
Voltage of insulated wire		3	00V CAT	*		
Safety compliance		EN61010-1: 2010+A1	1:2019	EN 61010-2-032	:2019	
EMC standard		EN61326-1:2013 EN61	000-3-2:2	2014 EN61000	-3-3:2013	

^{*}CAT I per IEC/EN 61010-031/A1:2008. No Rated Measurements Category per IEC/EN 61010-031: 2015 + AMD1:2018.

Large Pliers

知用电子 助力中国质造 ZHIYONG PROBEMASTER

Model	НСР	X8150(A)	НСРХ	(8300(A)	н	CPX8500
Bandwidth	HCPX8150	DC-12 MHz (Figure 10.a)	HCPX8300	DC- 6 MHz (Figure 13.a)	DC-5MHz	
(-3dB)	HCPX8150A	DC-22 MHz (Figure 10.b)	НСРХ8300А	DC-8 MHz (Figure 13.b)	(F	Figure 16)
D1	HCPX8150	≤29ns	HCPX8300	≤58ns		
Rise time	HCPX8150A	≤16ns	HCPX8300A	≤50ns		≤70ns
Continuous	HCPX8150	150Arms (Figure 11.a)	HCPX8300	300Arms (Figure 14.a)	500Arms(Figure 17)	
maximum input range	HCPX8150A	150Arms (Figure 11.b)	HCPX8300A	300Arms (Figure 14.b)		
Max peak current value	30	00Apk	50	00Apk		750Apk
Dange	30A	10X	50A	10X	75A	10X
Range	150A	100X	300A	100X	500A	100X
Overload	30A	≥30APk	50A	≥50APk	75A	≥75APk
Overioau	150A	≥300APk	300A	≥500APk	500A	≥750APk
Current transfer ratio	30A	0.1V/A	50A	0.1V/A	75A	0.1V/A
Current transfer ratio	150A	0.01V/A	300A	0.01V/A	500A	0.01V/A
measurable	30A	10mA	50A	10mA	75A	10mA
current	150A	100mA	300A	100mA	500A	100mA
Amplitude	30A	±1%±10mA	50A	±1%±10mA	75A	±1%±10mA
accuracy (DC,45-66Hz)	150A	±1%±100mA	300A	±1%±100mA	500A	±1%±100mA
Input	HCPX8150	Referenc (Figure 12.a)	HCPX8300	Reference (Figure 15.a)	Reference	
impedance	HCPX8150A	Referenc (Figure 12.b)	НСРХ8300А	Reference (Figure 15.b)	(F	Figure 18)
Maximum Amp-Second Product	300	OA • ms	500	A • ms	7	50A • ms
Terminal load			≥100kΩ	!	•	
Power supply		DC	5V/2A (Standar	d Adaptor)		
Voltage of insulated wire		6	000V CATII 300	OV CATIII		
Safety compliance		EN61010-1: 20)10+A1:2019	EN 61010-2-032:2	2019	
EMC standard		EN61326-1:2013	EN61000-3-2:2	2014 EN61000-3	3-3:2013	

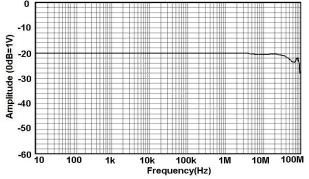


Fig 1 .a HCPX8030 **Amp- Frequency curve**

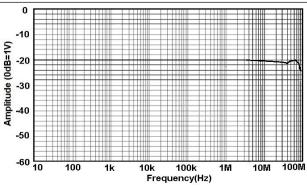


Fig 1 .b HCPX8030C **Amp- Frequency curve**

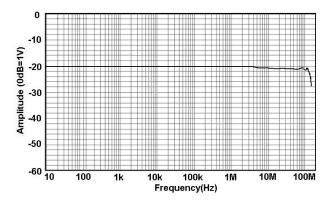


Fig 1 .c HCPX8030D Amp- Frequency curve

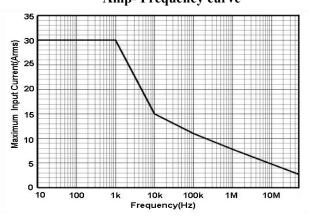


Fig 2.a HCPX8030
Continuous maximum input measurement

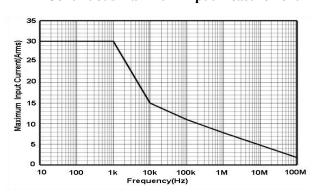


Fig. 2.c HCPX8030D

Continuous maximum input measuremen

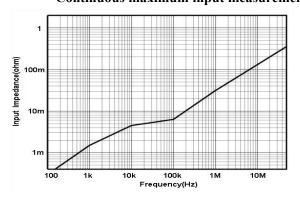


Fig 3.a HCPX8030
Input impedance VS Frequency curve

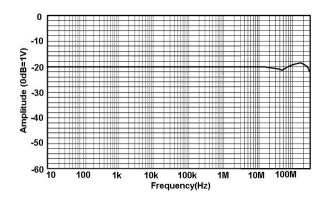


Fig 1 .d HCPX8030H Amp- Frequency curve

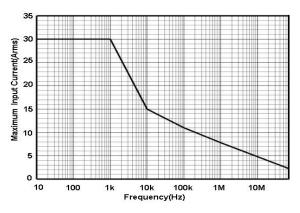


Fig 2.b HCPX8030C
Continuous maximum input measurem

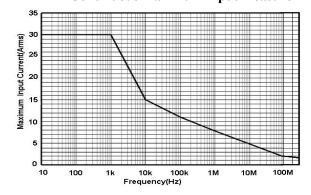


Fig.2.d HCPX8030H
Continuous maximum input measuremen

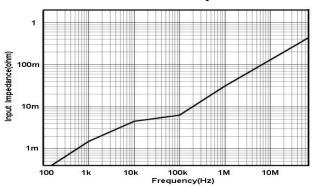


Fig 3.b HCPX8030C Input impedance VS Frequency curve

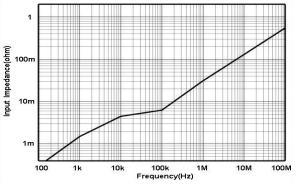


Fig 3.c HCPX8030D
Input impedance VS Frequency curve



Fig 3.d HCPX8030H
Input impedance VS Frequency curve

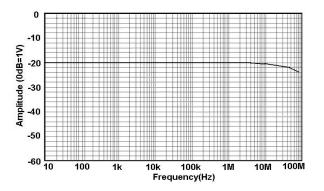


Fig 4 HCPX8050 Amplitude-Frequency Curve

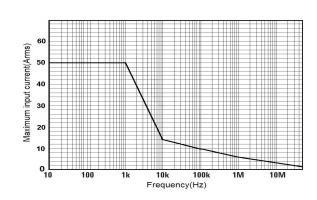


Fig 5 HCPX8050
Continuous maximum input rating

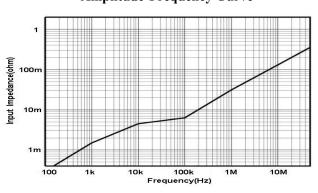


Fig 6 HCPX8050
Input Impedance-frequency curve

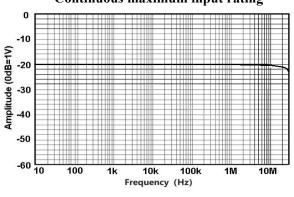


Fig 7 HCPX8070

Amplitude-Frequency Curve

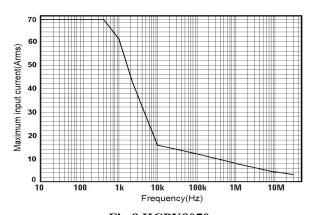


Fig 8 HCPX8070
Continuous maximum input rating

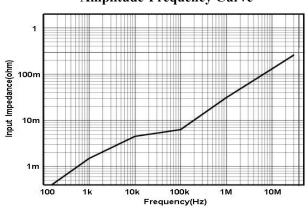


Fig 9 HCPX8070
Input Impedance-frequency curve

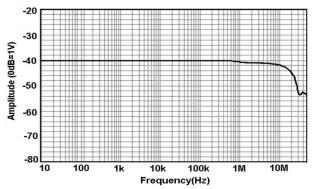


Figure 10.a HCPX8150 Amplitude-Frequency Curve

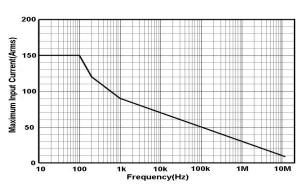


Fig 11.a HCPX8150

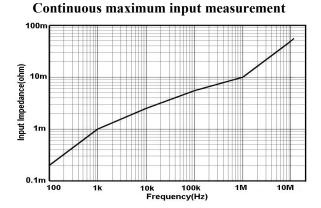


Fig 12.a HCPX8150
Input Impedance-Frequency curve

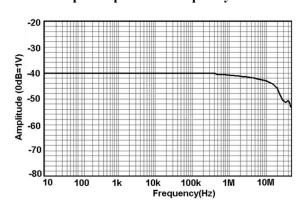


Fig 13.a HCPX8300 Amplitude-frequency Curve

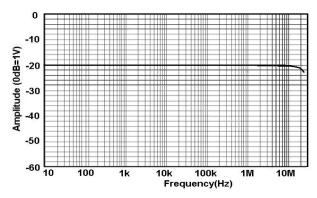


Figure 10.b HCPX8150A Amplitude-Frequency Curve

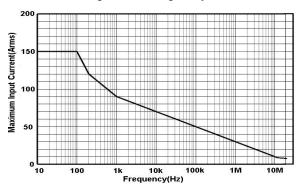


Fig 11.b HCPX8150A

Continuous maximum input measurement

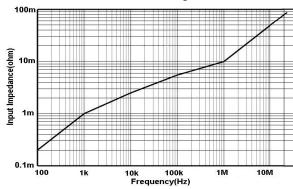


Fig12.b HCPX8150A
Input Impedance-Frequency curve

Fig 13.b HCPX8300A
Amplitude-frequency Curve

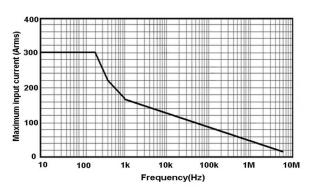


Fig 14.a HCPX8300
Continuous maximum input measurement

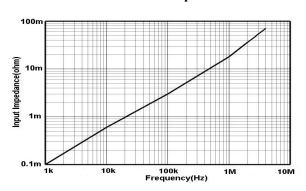


Fig 15 .a HCPX8300 Input Impedance-Frequency Curve

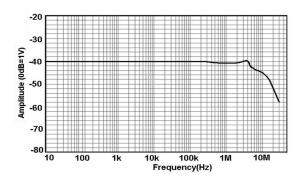


Fig 16 HCPX8500 Amplitude-frequency Curve

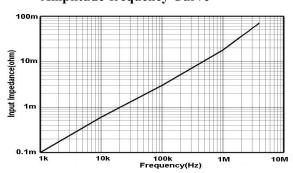


Fig 18 HCPX8500
Input Impedance-Frequency Curve

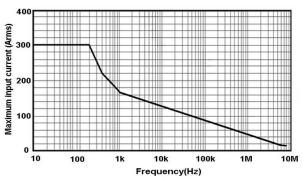


Fig 14.b HCPX8300A
Continuous maximum input measurement

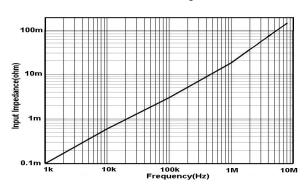


Fig 15.b HCPX8300A
Input Impedance-Frequency Curve

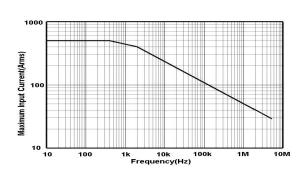


Fig 17 HCPX8500

Maximum continuous input measurement

知用电子 助力中国质造 ZHIYONG PROBEMASTER

■ Delay time (mainframe with 1m BNC cable)

	Small current range	Large current range
HCPX8030	22.1ns	20.6ns
HCPX8030C	20.1ns	19.2ns
HCPX8030D	17.6ns	17.4ns
НСРХ8030Н	17.5ns	16.9ns
HCPX8050	21.8ns	20.5ns
HCPX8070	26.0ns	25.0ns
HCPX8150	38.7ns	37.5ns
HCPX8150A	30.7ns	30.9ns
HCPX8300	42.1ns	39.3ns
HCPX8300A	51.8ns	50.8ns
HCPX8500	58.4ns	62.5ns

Mechanical characteristics

Model	HCPX8030 (C/D/H)	HCPX8050	HCPX8070	HCPX8150 (A)	HCPX8300(A)	HCPX8500
Measurement conductor diameter max.		5mm			20mm	
Cable length		1m			1.5m	
Cable length(CK-310)				100cm		
Adapter dimensions(CK-612)			62*58*29	mm line: 1.5m		
Clamp dimensions (L*W*H)	17	76*39.5*18m	m	17	74*67.5*30mm	
Termination unit (L*W*H)			91.5*	40*26.5mm		
Probe weight		255g			525g	

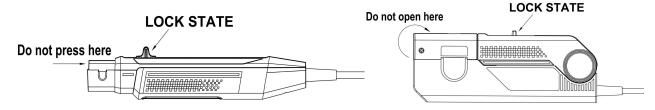
Environmental characteristic

Operating temperature and humidity	0-40°C,80% or less
Storage temperature and humidity	-10-50°C,80% or less
Operating altitude	2000m
Storage altitude	12000m

7. Operating Method

- The output interface of this machine is set inside. When using the oscilloscope, please select high input resistance (1M Ω). If the input resistance is 50 Ω , the data will be incorrect.
- Please make sure the current measured doesn't surpass the maximum current. The magnetic core will saturate. The saturated magnetic core will neutralize the generate waveform during saturation. The overcharged inrush might cause mistaken degaussing and need to be zero set again.
- ♦ When power is connected, offset might occur because of the heat generated by the machine. But it will be stabilized after about 30 min.
- ♦ Strong magnetic field like transformer, large circuit, high electricity like wireless will cause deviation
- The voltage might deviate because of the surrounding temperature, so please be careful when testing

知用电子 助力中国质造 ZHIYONG PROBEMASTER


sequentially

- The frequency of the current under test may cause resonance, but this won't influence the testing.
- The position of conductor under test in the sensor will influence the result, so please move the conductor under test into the center of the sensor.
- Push the switch control pole all the way through until the unlock mark disappear. Please make sure the control pole is locked and the entire structure is closed. If the entire structure isn't closed, the testing will go wrong.
- ❖ If you insert the high potential side of the circuit in high frequency domain, the result might be influenced by the noise. If it's necessary, please limit the waveform observer's frequency domain or insert the low potential side of the circuit.

- Do not power the probe with the USB connector of the oscilloscope, most of them cannot output enough current for the probe.
- When disconnecting the output terminal, please pull out the connector after unlocking. The output terminal will be damaged if you force to drag the cable out before unlocking.
- When putting in the output terminal other than BNC terminal, please be careful for the polarity of the terminal.
- The continuous maximum input range is the fixed value caused by the machine's operating heat. Please do not put in current higher than this value, or the device will be damaged.
- The continuous maximum input range will change according to the frequency of the current under test. The probe will be damaged when operate under overcharged current.
- When the input current continuously surpasses the maximum input range, the self-protection will be activated by the heating of the sensor and cause wrong output. Please stop the current input and wait for full cool down before next operation.
- The protection circuit will be mistakenly activated by the high temperature even when the continuous current under test is below the max input.
- When the connect input surpass the max input range current and activate the protection function too often, the device may be damaged.
- You must open the entire part through switch controller.
- At the lock state, please do not press the entire part as shown below.

7.1 Preparation before testing

- ♦ Prepare the high frequency current probe HCPX8000 series, adapter and oscilloscope
- ♦ Power up the HCPX8000 probe and the green LED power indicator will be lighted.
- ♦ Set the oscilloscope: Ground the measuring mode, zero set the oscilloscope and turn the oscilloscope mode to DC mode.
- ♦ Choose the proper range according to the current under test. The default setting of the probe is large current range

7.2 Degaussing and Zero setting

 \checkmark Connect the HCPX8000 with oscilloscope (Make sure the input impedance of the oscilloscope is $1 \text{M} \Omega$)

- Lock the probe until the UNLOCK symbol disappear.
- Press the button to degauss and zero set. There will be beeping as success indication after 6s.

7.3 Measuring method

- Confirm the previous steps
- → Pull the switch control pole of the sensor, open the head of the sensor and make the current direction mark in front of the sensor accordance with the current under test, and put the conductor under test in the middle of the sensor.
- Push the switch control pole of the sensor until the UNLOCK mark disappear. Lock the probe, make sure the entire part is closed, and then observe the waveform under test. Utilize the current transfer ratio to transform the voltage sensibility into current sensibility. For instance, the ratio of HCPX8030 is 0.1V/A (30A range), and then, when the voltage sensibility of the waveform monitor is 10mV/div, the current sensibility is 100mA/div.

8. The method to deal with abnormal situation

Situation	Possible reason	Dealing method
Can't measure DC, or the value	Power is off	Turn on power
obtained is comparatively low in	Oscilloscope set to AC coupling	Set to DC coupling
the frequency range	Sensor is not locked	Please lock the sensor
Auto degaussing or zero setting	The probe is on the operating circuit under test	Turn off the circuit under
unsuccessful	when degaussing or zero setting is applied	test and zero set again.
The amplitude is comparatively	The input resistance of the test equipment like	Set the resistance over
low in the frequency range	oscilloscope is 50Ω	1ΜΩ

9. Packing list

Packing list		
ITEM	Quantity	
Probe	1	
DC-5V/2A adapter(CK-605A)	1	
USB cable	1	
BNC connecting line	1	
Instruction manual	1	
Guarantee card	1	
Test report	1	

CYBERTEK

SHENZHEN ZHIYONG ELECTRONICS CO., LTD.

Addr: Room A1702, Building 4, TianAn Cyber Park, HuangGe Road, LongGang

District, ShenZhen City, China

Tel: (86) 400 852 0005 / (86 755) 86628000

Email: cybertek@cybertek.cn © Zhiyong Electronics, 2025

Url: http://www.cybertek.cn Published in China, Sept. 1, 2025